


| Date Planned ://           | Daily Tutorial Sheet - 7 | Expected Duration : 90 Min |  |  |
|----------------------------|--------------------------|----------------------------|--|--|
| Actual Date of Attempt :// | Level - 2                | Exact Duration :           |  |  |

| ACIU | iai pate                                                                                                        | or Arrempr :                                                                                           | / / _      | _             | Levei      | - 2             | EX         | act Duration :    |  |  |
|------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|---------------|------------|-----------------|------------|-------------------|--|--|
| 86.  | For a                                                                                                           | For a given principal level $n = 5$ , the energy of its subshells is of the order:                     |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | s < d < f < p                                                                                          | <b>(B)</b> | $s$           | (C)        | d < f < p < s   | <b>(D)</b> | $s$               |  |  |
| 87.  | The m                                                                                                           | The maximum number of electrons in an orbital, is governed byprinciple.                                |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | Hund's                                                                                                 | <b>(B)</b> | Aufbau        | (C)        | Pauli's         | <b>(D)</b> | None of these     |  |  |
| 88.  | Any p orbital can accommodate up to:                                                                            |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | Four electrons                                                                                         |            |               | <b>(B)</b> | Two electrons v | with pa    | rallel spin       |  |  |
|      | (C)                                                                                                             | Six electrons                                                                                          |            |               | <b>(D)</b> | Two electrons v | with op    | posite spin       |  |  |
| 89.  | The spectral line obtained when an electron jumps from $n=6$ to $n=2$ level in hydrogen atom belongs to         |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | the:                                                                                                            |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | Balmer series                                                                                          | <b>(B)</b> | Lyman series  | (C)        | Paschen series  | <b>(D)</b> | Pfund series      |  |  |
| 90.  | The ionization potential of hydrogen atom is 13.6 eV. The energy required to remove an electron from the        |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | n = 2                                                                                                           | state of the hydro                                                                                     | ogen ato   | m is:         |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | 3.4 eV                                                                                                 | <b>(B)</b> | 6.8 eV        | (C)        | 13.6 eV         | <b>(D)</b> | 27.2 eV           |  |  |
| 91.  | The e/m ratio for electron was determined by                                                                    |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | Einstein                                                                                               | <b>(B)</b> | Newton        | (C)        | J J. Thomson    | <b>(D)</b> | Planck            |  |  |
| 92.  | $\mathrm{Na}^{\oplus}$ and $\mathrm{Ne}\mathrm{are}$ to each other:                                             |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | Isobar                                                                                                 | <b>(B)</b> | Isoelectronic | (C)        | Isotone         | (D)        | Isotope           |  |  |
| 93.  | Which of the following angular momentum is not possible for electron in Bohr's orbit?                           |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | $0.5\hbar$                                                                                             | <b>(B)</b> | $\hbar$       | (C)        | $2\hbar$        | (D)        | $3\hbar$          |  |  |
| 94.  | If the                                                                                                          | If the radius of the first Bohr orbit of the H atom is r then for the Li <sup>2+</sup> ion it will be: |            |               |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | 3r                                                                                                     | <b>(B)</b> | 9r            | (C)        | r/3             | (D)        | r/9               |  |  |
| 95.  | The wavelength of certain line in H-atom spectra is observed to be 4341Å. ( $R_H = 109677 cm^{-1}$ ). The value |                                                                                                        |            |               |            |                 |            |                   |  |  |
|      | of qua                                                                                                          | antum number of                                                                                        | higher     | state is:     |            |                 |            |                   |  |  |
|      | (A)                                                                                                             | 3                                                                                                      | <b>(B)</b> | 4             | (C)        | 5               | <b>(D)</b> | Data insufficient |  |  |